一种基于炮射地面震动传感器的目标识别算法研究  被引量:3

The Study of Gun-launched Ground Vibratiuncle Sensor Recognition Arithmetic

在线阅读下载全文

作  者:陈珅培 王曙光[1] 宁全利[1] 

机构地区:[1]解放军炮兵学院,合肥230031

出  处:《弹箭与制导学报》2011年第2期185-188,共4页Journal of Projectiles,Rockets,Missiles and Guidance

摘  要:介绍了自适应遗传算法优化的BP神经网络(AGA-BP)算法在炮射地面震动传感器目标识别中的应用。首先针对BP神经网络可能未收敛到全局最小点的缺陷,提出自适应遗传算法与BP神经网络结合的一种优化算法。之后进行仿真实验并对履带和轮式车辆的采样信号进行时频分析,利用小波变换提取特征值。最后利用优化后的算法与传统算法进行了样本训练和识别,对比结果表明该方法能减少识别误差。An adaptive genetic algorithm optimizing neural network (AGA-BP) applied in the gun-launched ground vibratiuncle sensor recognition was introduced. First, as for the BP neural network may not converge to the global minima, an optimization a[go- rithm formed by combination of adaptive genetic algorithm with the BP neural network was proposed and the network was trained by the back-propagation method. Then the simulation was conducted for time-frequency analysis on sampling signals of tracked vehicle and wheeled vehicle, the eigenvalue was extracted from sampled signals by wavelet transform. The sample training and recognition were performed by optimized algorithm and traditional algorithm, the comparison shows recognition error can be reduced by the method.

关 键 词:遗传算法 BP神经网络 小波变换 目标识别 震动信号 

分 类 号:TN971[电子电信—信号与信息处理] TP212[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象