What are extreme environmental conditions and how do organisms cope with them?  

What are extreme environmental conditions and how do organisms cope with them?

在线阅读下载全文

作  者:John C. WINGFIELD J. Patrick KELLEY Frederic ANGELIER 

机构地区:[1]Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, U.S.A

出  处:《Current Zoology》2011年第3期363-374,共12页动物学报(英文版)

基  金:JCW is grateful for grant number IOS-0750540 from the National Science Foundation and for support from the Endowed Professorship in Physiology, University of California, Davis. F.A. was supported by a Marie Curie Postdoctoral Fellowship (PolarClimStress) from the European Science Foundation. Current address for EA. is: Centre d'Etudes Biologiques de Chize', CNRS, Villiers en Bois 79360, France.

摘  要:Severe environmental conditions affect organisms in two major ways. The environment may be predictably severe such as in deserts, polar and alpine regions, or individuals may be exposed to temporarily extreme conditions through weather, presence of predators, lack of food, social status etc. Existence in an extreme environment may be possible, but then to breed or molt in addition can present major bottlenecks that have resulted in the evolution of hormone-behavior adaptations to cope with unpredictable events. Examples of hormone-behavior adaptations in extreme conditions include attenuated testosterone secretion because territoriality and excess courtship may be too costly when there is one opportunity to reproduce. The individual may even become insensitive to testosterone when target areas of the brain regulating reproductive behavior no longer respond to the hormone. A second example is reduced sensitivity to glucocorticoids following acute stress during the breeding season or molt that allows successful reproduction and/or a vital renewal of the integument to endure extreme conditions during the rest of the year. Reduced sensitivity could involve: (a) modulated response of the hypothalamo-pituitary-adrenal axis, (b) reduced sensitivity to high glucocorticoid levels, or (c) a combination of (a) and (b). Moreover, corticosteroid binding proteins (CBP) buffer responses to stress by reducing the movement of glucocorticoids into target cells. Finally, intracellular enzymes (11 β-hydroxysteroid dehydrogenase and variants) can deactivate glucocorticoids entering cells thus reducing interaction with receptors. These mechanisms have important implications for climate change and increasing extremes of weather [Current Zoology 57 (3): 363-374, 2011].

关 键 词:Extreme environment Habitat configuration GLUCOCORTICOIDS Stress response Corticosteroid-binding proteins Behavior 

分 类 号:Q55[生物学—生物化学] Q581

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象