检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周勇[1] 刘凡[1] 贺纪正[1] 吴丹 李植生[3] 邱炳文[1]
机构地区:[1]华中农业大学亚热带土壤资源与环境农业部重点开放实验室,武汉430070 [2]湖北省环境保护研究所 [3]中国科学院武汉水生生物研究所
出 处:《中国环境监测》1999年第5期41-45,共5页Environmental Monitoring in China
摘 要:探讨了将多元回归分析模型和灰色系统(GM(1,1))耦合应用于武汉市东湖水体污染预测的方法和技术。首先根据多年污染因子浓度监测资料分别建立了COD、BOD、TN、TP与人口、经济和捕鱼量之间的多元线性回归方程;之后根据人口、经济和鱼产量的历史资料,用GM(1,1)模型拟合,再反推得到预测值;最后,将人口、经济和鱼产量的预测值代入多元线性回归方程得到污染物浓度的未来值。这样将环境污染与社会经济联系起来更能反映环境质量的变化趋势。结果表明,到21 世纪,东湖水体的TN、TP、COD、BOD 的浓度将分别是1982 年的2.58、3.70、2.45 和7.89 倍;比1992年分别增长33.5% 、68.18% 、68.28% 和229.24% ,将处于超富营养状态,如不及时治理,生态环境将进一步恶化。The coupling technique of pluralistic regression and Grey System (GM<1,1>) was discussed and applied to water pollution prediction of the East Lake in Wuhan city in China. Firstly, pluralistic regressions were established respectively between COD, BOD, TN, TP and population, economy and fish yield; Secondly, the history material of population, economy and fish yield was linked and calculated with GM<1,1>,so the prediction value of population, economy and fish yield was obtained; Finally the prediction value of population, economy and fish yield was input to the pluralistic regression of COD, BOD, TN and TP, and the prediction value of the contaminant content was get The prediction results of the East Lake were satisfactory In this way, environment pollution was combined with social economy, the prediction could reflect objectively the tendency of the water contaminant change. If the East Lake was not cleaned in time, in the 21 th century, the densities of TN, TP, COD, BOD in it would be 2 58, 3 70, 2 54 and 7 89 times as those in 1982 and increase by 33 50%, 68 18%, 68 28% and 229 24% when compared with that in 1990. If so, organic pollution and utrophication will be more and more serous day by day
分 类 号:X21[环境科学与工程—环境科学] X832
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.90.150