检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学电气工程及自动化学院,哈尔滨150001
出 处:《沈阳工业大学学报》2011年第3期321-325,共5页Journal of Shenyang University of Technology
基 金:国家"十一五"科技支撑计划项目(2006BAJ01A04)
摘 要:针对传统的供热调度缺乏对未来供热量进行有效估计这一问题,提出一种基于乘积季节ARIMA模型的供热负荷预报方法.将乘积季节ARIMA模型引入供热负荷预报,通过分析供热负荷数据其固有的趋势和周期性,建立适宜的季节性ARIMA模型,预测未来24小时的供热负荷.采用大庆地区某热力站的供热数据进行建模和仿真预测,其结果的最大误差为3.14%,日预报平均误差为1.45%.实验结果表明,给出的预报结果真实可靠,能够满足供热工程的实际需求,其预报值将成为供热负荷调度和节能的重要依据.A heat load forecasting method based on multiplicative seasonal ARIMA model was proposed in order to solve the problem that the traditional heat dispatching lacks an effective estimation for future heat load. Through introducing multiplcative seasonal ARIMA model in heat load forecasting and by analyzing the intrinsic trend and peroidicity of heat load data, the appropriate seasonal ARIMA model was established to froecast the heat load in next 24 hours. The heat load data from one heating station in Daqing city were used to perform the model establishment and simulation forecast. It is found that the maximum forecasting error is 3. 14% and the mean dally forecasting error is 1.45%. The experimental results show that the forecasting results are reliable, can meet the demands of heating engineering and provide an important basis for both heat dispatching and energy saving.
关 键 词:供热负荷预报 ARIMA模型 乘积季节ARIMA 时间序列 供热调度 供热节能 日预报
分 类 号:TK39[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229