检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:辛芳芳[1]
出 处:《纺织学报》2011年第7期60-64,共5页Journal of Textile Research
摘 要:在纺织服装工程研究中应用人工智能与机器学习的方法,可以更加准确地预测纺织材料的穿着热湿舒适性。为此,利用最小方差支持向量机(LSSVM),分析了36种针织织物热湿舒适性客观指标与人体穿着对织物的热湿舒适性主观评定之间的对应关系,并建立了客观指标与主观评定之间的回归模型。该模型能够快速预测成衣之后人体穿着主观评定的舒适度,并可节约新面料和织物材料研发过程中的评估成本。通过对多个回归模型的比较与分析,证明LSSVM回归模型比BP神经网络模型能够更加准确地预测织物的主观热湿舒适性。The application of artificial intelligence and machine learning methods to textile fashion engineering facilitates the prediction of thermal-moisture comfort of fabrics.Thirty-six kinds of knitted fabrics are investigated and the relationship between the thermal-moisture comfort objective evaluation indices and the subjective wear evaluation indices of the fabrics are analyzed by least squares support vector machines(LSSVM).And regression models are created to predict the subjective evaluation using objective evaluation indices as input parameters.These models can quickly predict the subjective wear comfort when the fabrics are made into clothes and significantly reduce the cost of evaluation for the development of new fabric materials.Analytical comparison of different regression models demonstrated that the LSSVM model yields more accurate prediction of subjective thermal-moisture comfort than the BP model.
关 键 词:针织织物 人工智能 热湿舒适性 回归分析 核方法 最小方差支持向量机 机器学习
分 类 号:TS101.92[轻工技术与工程—纺织工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.36.122