检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王红玲[1,2] 袁晓虹[1,2] 王步康[1,2] 周国栋[1,2]
机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215006 [2]江苏省计算机信息处理技术重点实验室,江苏苏州215006
出 处:《计算机工程与应用》2011年第20期113-116,共4页Computer Engineering and Applications
基 金:国家自然科学基金(No.60673041;No.60873150);国家教育部博士点基金(No.200802850006);江苏省自然科学基金(No.BK2008160);江苏省高校自然科学重大基础研究项目(No.08KJA520002)~~
摘 要:首次实现了一个基于依存关系的中文名词性谓词识别平台,作为语义角色标注的前提,谓词识别的结果直接影响语义角色标注的性能。使用两种方法进行实验:一种是基于传统的特征向量的方法在Chinese Nombank的转换语料上进行了系统实验,对各种词法特征、结构特征及其组合进行了测试,标准语料上F1值达到89.65,自动语料上达到81.27。另一种是使用树核的方法进行探索性实验,在标准语料和自动语料上分别得到84.62和80.93的F1值。This paper implements a Chinese dependency-based nominal predicate identification system.Being the premise of Semantic Role Labeling(SRL),predicate identification plays a critical role.Two different ways are used in this paper.One is the traditional feather vector based predicate identification.In particular, various kinds of lexical and structure features are incorporated to improve the performance with systematic evaluation on the transferred corpus from. Chinese Nombank.The sys- tem achieves 89.65 in labeled F1 for golden corpus,81.27 for automatic corpus.In another way,a tree kernel-based method is proposed to explore structural information.It achieves 84.62 in labeled F1 for golden corpus,80.93 for automatic corpus.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157