Improved Biodegradation of 1,2,4-Trichlorobenzene by Adapted Microorganisms in Agricultural Soil and in Soil Suspension Cultures  被引量:4

Improved Biodegradation of 1,2,4-Trichlorobenzene by Adapted Microorganisms in Agricultural Soil and in Soil Suspension Cultures

在线阅读下载全文

作  者:SONG Yang WANG Fang F. O. KENGARA BIAN Yong-Rong YANG Xing-Lun LIU Cui-Ying JIANG Xin 

机构地区:[1]State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China) [2]Department of Chemistry, Maseno University, Maseno 40105 (Kenya)

出  处:《Pedosphere》2011年第4期423-431,共9页土壤圈(英文版)

基  金:Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-EW-QN403);the National Natural Science Foundation of China (Nos. 41030531,4092106,and 20707028);the Jiangsu Provincial Natural Science Foundation of China (No. BK2010608)

摘  要:Inoculating soil with an adapted microbial community is a more effective bioaugmentation approach than inoculation with pure strains in bioremediation.However,information on the potential of different inocula from sites with varying contamination levels and pollution histories in soil remediation is lacking.The objective of the study was to investigate the potential of adapted microorganisms in soil inocula,with different contamination levels and pollution histories,to degrade 1,2,4-trichlorobenzene (1,2,4-TCB).Three different soils from chlorobenzene-contaminated sites were inoculated into agricultural soils and soil suspension cultures spiked with 1,2,4-TCB.The results showed that 36.52% of the initially applied 1,2,4-TCB was present in the non-inoculated soil,whereas about 19.00% of 1,2,4-TCB was present in the agricultural soils inoculated with contaminated soils after 28 days of incubation.The soils inoculated with adapted microbial biomass (in the soil inocula) showed higher respiration and lower 1,2,4-TCB volatilization than the non-inoculated soils,suggesting the existence of 1,2,4-TCB adapted degraders in the contaminated soils used for inoculation.It was further confirmed in the contaminated soil suspension cultures that the concentration of inorganic chloride ions increased continuously over the entire experimental period.Higher contamination of the inocula led not only to higher degradation potential but also to higher residue formation.However,even inocula of low-level contamination were effective in enhancing the degradation of 1,2,4-TCB.Therefore,applying adapted microorganisms in the form of soil inocula,especially with lower contamination levels,could be an effective and environment-friendly strategy for soil remediation.Inoculating soil with an adapted microbial community is a more effective bioaugmentation approach than inoculation with pure strains in bioremediation. However, information on the potential of different inocula from sites with varying contamination levels and pollution histories in soil remediation is lacking. The objective of the study was to investigate the potential of adapted microorganisms in soil inocula, with different contamination levels and pollution histories, to degrade 1,2,4-trichlorobenzene (1,2,4-TCB). Three different soils from chlorobenzene-contaminated sites were inoculated into agricultural soils and soil suspension cultures spiked with 1,2,4-TCB. The results showed that 36.52% of the initially applied 1,2,4-TCB was present in the non-inoculated soil, whereas about 19.00% of 1,2,4-TCB was present in the agricultural soils inoculated with contaminated soils after 28 days of incubation. The soils inoculated with adapted microbial biomass (in the soil inocula) showed higher respiration and lower 1,2,4-TCB volatilization than the non-inoculated soils, suggesting the existence of 1,2,4-TCB adapted degraders in the contaminated soils used for inoculation. It was further confirmed in the contaminated soil suspension cultures that the concentration of inorganic chloride ions increased continuously over the entire experimental period. Higher contamination of the inocula led not only to higher degradation potential but also to higher residue formation. However, even inocula of low-level contamination were effective in enhancing the degradation of 1,2,4-TCB. Therefore, applying adapted microorganisms in the form of soil inocula, especially with lower contamination levels, could be an effective and environment-friendly strategy for soil remediation.

关 键 词:BIOAUGMENTATION CHLOROBENZENES contaminated soil DECHLORINATION inoculation VOLATILIZATION 

分 类 号:X172[环境科学与工程—环境科学] S158[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象