检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学自动化所,南京210096 [2]复旦大学数学系,上海200437
出 处:《控制理论与应用》1999年第6期788-792,共5页Control Theory & Applications
摘 要:本文研究了用Lur’e 多非线性系统描述的被控对象的镇定问题.把问题的可解性归结到特殊的多线性矩阵不等式的可解性.非线性状态反馈和输出反馈控制器的设计分别依赖于一个双线性和三个三线性矩阵不等式的解.This paper discusses the absolute stabilization problem for Lur'e systems with multiple nonlinear loops in terms of state space approach. Solvability conditions are presented to design nonlinear controllers such that the closed loop system is absolutely stable via the algebraic matrix inequality (AMI) approach. It is shown that feedback controllers exist if and only if a class of special multilinear matrix inequalities (MLMIs) are solvable. Also, the AMI based design method obtained in this paper is simplified so as to be computationally feasible and tractable. The approach can be generalized to deal with other problems such as H 2,H ∞ and dissipation control problem.
关 键 词:非线性系统 Lur'e系统 镇定 非线性控制器 设计
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222