检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓永录[1] W.JohnBraun 赵以强
机构地区:[1]中山大学数学系,广州510275 [2]Winnipeg大学数理统计系
出 处:《运筹学学报》1999年第4期17-30,共14页Operations Research Transactions
基 金:This work was supported by research grants from the Natural Sciences,Engineering Research Council of Canada (NSERC).
摘 要:本文研究带有延迟休假的 M/M/1排队系统,服务员在空闲了一段时间(称做延迟时间)后才正式开始休假,每次休假的时间长度有指数分布.若一次休假结束时系统中的顾客数目低于某一水平K,则服务员开始另一次休假;否则转为投入服务,这时系统开始一个新的忙期。对于延迟时间有指数分布和是确定的情形分别求得系统的稳态分布的精确表示及某些性能指标.文章还讨论了系统优化问题,给出使得单位时间平均总成本最小的K值.证明在泊松到达的情形最优延迟时间是0(无延迟)或无穷(无休假)An M/M/1 queue with delayed vacation is studied. If the server has been idle for a period of time (called the delay time), the server begins an exponentially distributed vacation which is repeated as long as the number of customers in the system remains less than some number K. For the cases of exponential and deterministic delay time, exact expressions for the steady state probability distribution are obtained, together with associated performance measures. System optimization is also considered; values of K are given which minimize the average total cost per unit time, and it is shown that the optimal delay period is either 0 (no delay) or infinite (no vacation), in case of Poisson arrivals.
关 键 词:排队模型 稳态分布 延迟休假 M/M/1排队系统
分 类 号:O226[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188