检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学测绘学院,武汉430079 [2]国家测绘产品质量监督检验测试中心,成都610041 [3]长安大学地质工程与测绘工程学院,西安710054
出 处:《测绘科学》2011年第4期22-23,共2页Science of Surveying and Mapping
摘 要:卡尔曼滤波是GPS精密单点定位中最常用的参数估计方法。理论上讲,随着观测数据的增多,通过卡尔曼滤波可以得到更精确的状态估值,但有时由于状态异常或发生大的周跳等原因,使得状态估值与实际状态之间的误差较大,滤波会发生发散现象,为此,本文提出了将抗差自适应滤波模型运用到精密单点定位中,通过算例分析显示,该方法将显著提高定位结果的解算精度和稳定性。Kalman Filter has been mostly applied in GPS precise point positioning. In theory, more accurate valuation of the state will be estimated by Kalman filter with increasing data, but sometimes due to the occurrence of state abnormalities or cycle slip and other reasons, there is big diversity between the estimation and actual state, that' s filter divergence phenomenon. To solve the problems, this paper put forward an adaptively robust filter model, which was applied in precise point positioning later. Numerical example showed that this method could significantly improve the positioning accuracy, and the result would be more steady as well.
分 类 号:P228.42[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69