基于CMAC神经网络的低压故障电弧检测  被引量:3

Fault arcing detection for building low voltage lines based on CMAC neural network

在线阅读下载全文

作  者:段培永[1] 窦甜华[1] 杨修文[1] 郭东东[1] 邹苒[2] 

机构地区:[1]山东建筑大学智能建筑技术重点实验室,山东济南250101 [2]山东城市建设职业学院图书馆,山东济南250101

出  处:《山东建筑大学学报》2011年第2期105-109,共5页Journal of Shandong Jianzhu University

基  金:国家自然科学基金项目(61074070)

摘  要:低压供配电线路中的故障电弧由于其电流值小,不足以使传统断路器动作,且电路中存在与故障电弧波形特征相似的负载,使故障电弧成为产生电气火灾的主要原因之一。采用单一判据判断故障电弧,误判率较高。通过搭建实验平台,有效模拟建筑物低压供配电线路中的故障电弧,分析故障电弧特征,提取出表征故障电弧的特征量。使用CMAC神经网络建立模型,将各周期采样点均值的差值和小波高频系数两种判据融合,克服单一判据的不确定性和局限性,所提出的信息融合方法可有效提高辨识故障电弧的准确率。The value of arcing fault current is too small to make the traditional circuit breaker to cut off the power supply, and there are loads which have the similar characters to arcing fault in the circuit, so arcing fault is one of the major causes of electrical fire. Simplex criterion used to detect fault arcing has the shortcoming of high miscarriage rate. In this paper, the fault arcing of building low voltage dis- tribution lines is simulated through building an experiment platform and the characteristics of fault arcing are extracted. CMAC neural network is used to build a model to fuse two criteria which are the differences of the mean values of sample points per cycle and the wavelet high frequency coefficient to overcome the uncertainty and limitation of simplex criterion, and the presented method of the multi-in- formation fusion can improve the accuracy of identifying fault arcing effectively.

关 键 词:CMAC神经网络 故障电弧 检测 信息融合 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象