检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李全善[1,2] 张义山 曹柳林[1] 林晓琳 崔佳
机构地区:[1]北京化工大学信息科学与技术学院,北京100029 [2]北京世纪隆博科技有限责任公司,北京100020 [3]中国石油辽阳石化分公司,辽宁辽阳111003
出 处:《化工学报》2011年第8期2345-2349,共5页CIESC Journal
基 金:国家自然科学基金项目(60974031;60704011);北京市中小企业创新基金项目(Z09010400260912)~~
摘 要:提出了离线结构学习和在线权值校正相结合的双模型结构RBF神经网络,以离线学习和在线校正相结合的方式实现网络的自学习和自校正,满足了软测量仪表现场应用的要求。针对应用过程中出现预测误差过大的现象,通过对网络算法进行分析,研究影响网络预测精度的因素,在此基础上,提出了以K均值聚类法和递推下降算法相结合的RBF神经网络建模改进算法,仿真结果和实际应用证明了改进算法的有效性。A dual model RBF(radial basis function)neural network was proposed in this paper.One is used for self-learning,which learns one time a day.The other is used for on-line correcting,which is the running model currently.Both the self-learning model and the on-line correcting model are corrected six times every day and should track the current conditions of the system quickly.At the same time,the accuracy of the two models should be compared.If the accuracy of the on-line correcting model is less than the one of the self-learning model,the latter becomes the new currently running model instead of the old one.Otherwise,the currently model is maintained.To solve the problem of neural network large prediction errors,a network algorithm analysis is given and the influence factors of the network prediction accuracy are found.At last,an improved algorithm of RBF neural network modeling is proposed,which combines K-means clustering method with the recursive descent algorithm.Simulation and practical application proved the effectiveness of the improved method.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117