基于模糊模式识别的籽棉品级分级模型  被引量:4

Grading model of seed cotton based on fuzzy pattern recognition

在线阅读下载全文

作  者:袁荣昌[1,2] 孙龙清[1] 董晨曦[1] 王利[1] 

机构地区:[1]中国农业大学信息与电气工程学院,北京100083 [2]中国电力科学研究院电力自动化研究所,北京100192

出  处:《计算机应用》2011年第8期2097-2100,共4页journal of Computer Applications

基  金:国家"十一五"科技支撑计划重大项目(2009BADB0B05)

摘  要:籽棉品级分类问题是对农业经济有着重要影响的一个问题。在对籽棉图像黄度、亮度和杂质等特征提取分析基础上,基于模糊模式识别,运用模糊贴近度,构建籽棉品级分级模型,利用统计分布计算得出模型参数选取方法。利用图像欧拉数求得了不同大小杂质数量的近似值,运用神经网络对模型进行有效求解,通过调整模型参数使籽棉品级分级精度不断提高,分级模型在充分学习后,籽棉品级分级准确率达到92%,满足了实际应用的需要。Grade classification of seed cotton is a major issue that has a significant impact on the agricultural economy.According to the characteristics such as impurities,yellowness and brightness extracted from images of seed cotton,fuzzy pattern recognition was used to improve the classification of cotton grade.A classification model of seed cotton was constructed based on the fuzzy nearness.Fuzzy mathematics was combined with artificial neural network to build up a well improved model and algorithm.Statistical distribution was used to calculate and select the model parameter method.Eventually,the numbers of impurities of different sizes were worked out by using the Euler's numbers of the image.Based on the method of selecting model parameters,the proposed algorithm could be optimized step by step.After full learning,seed cotton classification accuracy rate reached 92%.The experimental results show that the presented algorithm satisfies the actual application needs.

关 键 词:籽棉 品级 模糊数学 模式识别 神经网络 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象