检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李万莎[1] 唐小芳[2] 何健[1] 胡志睿[3] 龚海鹏[3]
机构地区:[1]中国医学科学院,北京协和医学院检验医学研发中心,北京102206 [2]中国医学科学院,北京协和医学院阜外心血管病医院冠心病诊治中心,北京100037 [3]清华大学生命科学学院计算生物学实验室,北京100084
出 处:《心脏杂志》2011年第4期530-534,共5页Chinese Heart Journal
摘 要:目的:应用BP神经网络模型对冠心病相关因素影响值大小进行评估。方法:分别对265例冠心病患者和102例非冠心病患者(对照组),进行8项血液指标、3项生理检查和8项个人史的检测、调查及统计分析。对各个指标进行单因素分析,对有统计学意义的指标作为神经网络参数进行分析。对神经网络采用不同的传递函数、训练函数和隐含层节点数建立405种组合,对每种组合分别进行训练和测试,筛选出最佳组合,建立模型。并通过神经网络的平均影响值(M IV)评价各个自变量对于冠心病影响的重要性大小。结果:对有统计意义的18项指标进行BP神经网络模型分析,筛选出均方误差最小的最佳组合,其测试准确率、灵敏度、特异性均达到100%。应用人工神经网络对18项变量进行影响值大小的判断,结果表明总胆固醇、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇和收缩压4个变量对冠心病的影响最大。结论:BP神经网络可准确评估冠心病危险因素的影响值,对于冠心病的诊断和和早期筛查冠心病高危人群有一定意义。AIM: To establish the hazard model of coronary artery disease (CAD) using artificial neural networks (ANN) and to evaluate the relative risk factors. METHODS: A retrospective case-control study was conducted in 265 patients diagnosed with CAD by coronary angiography (at least one coronary artery stenosis 〉 50% in major epicardial arteries) and 102 subjects with normal coronary arteries were used as control. ANN models trained with different algorithms were performed in 367 records, divided into training ( n = 300) and testing ( n = 67) data sets randomly. The performance of prediction was evaluted by accuracy, sensitivity and specificity values based on standard definitions. RESULTS: The results demonstrated the ANN models trained with the 12 smallest mean-square-error algorithms were promising. Accuracy, sensitivity and specificity values varied, respectively, between 98.51 and 100%, 98.04 and 100% and 87.5 and 100% for testing. The best ANN model showed the value of 100% for accuracy, sensitivity and specificity. Using mean impact value of the ANN, total cholesterol, LDL cholesterol, HDL cholesterol and systolic blood pressure were found to be the most important risk factors for CAD. CONCLUSION: The proposed ANN models trained with the algorithms can be used as a promising approach for predicting CAD without the need for invasive diagnostic methods and for making prognostic clinical decisions.
分 类 号:R541.4[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166