检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]厦门大学信息科学与技术学院,福建厦门361005
出 处:《厦门大学学报(自然科学版)》2011年第4期697-702,共6页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金项目(60975084);福建省自然科学基金项目(2009J01305)
摘 要:提出了一种新的基于部分连接神经网络的自然场景图像分类方法.运用该方法对图像进行模式识别时,不必进行特征提取,而是将整个图像输入神经网络,由神经网络在训练中透明地选择和识别特征.由于大型图形处理器(GPU)并行处理系统的运用,使得神经网络演化速度大大加快,弥补了该方法计算量大的弱点.实验结果表明,利用部分连接神经网络进行场景图像分类,与利用特征提取后再识别场景的分类方法比较,在总识别率上大体相当;但不必进行特征提取,而且速度很快.并且,还运用了插值和延拓两种方法来对图像进行尺寸调整,使得神经网络可以训练和识别不同大小的场景图像.This paper presented a novel method for scene images classification via partially connected neuron network.The Parcone module didn′t need any feature extraction in the process of scene classication.In the training process of the neuron network,we inputed the entire image to the Parcone and the module could select the recognition feature automatically.The using of large-scale GPU parallel computing system accelerated the evolutionary of the neuron network in training and overcame the weakness resulted from the large calculated amount.The experiments showed that the Parcone performed as equally well as other methods using feature extraction in the average recognition rate in scene classification.Moreover,the method using Parcone was more effective in the computation speed.Besides,we used two methods of interpolation and continuation to adjust the sizes of the scene images so that the Parcone could recognize the scene images of different sizes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222