检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学自动化科学与工程学院,广东广州510640 [2]顺德职业技术学院电子与信息工程系,广东佛山528300
出 处:《控制理论与应用》2011年第7期1015-1020,共6页Control Theory & Applications
基 金:国家自然科学基金资助项目(60874114)
摘 要:本文研究了一类有非线性时变随机时滞的线性不确定系统的鲁棒稳定性.其中时变随机时滞表征为伯努利随机过程,具有已知的概率分布和变化范围.通过构造新泛函,建立了基于线性矩阵不等式的鲁棒均方指数稳定的充分条件,此条件易于用MATLAB工具箱来验证.本文所获得结果的主要特征是稳定性条件依赖时滞的概率分布和时滞导数的上界.同时也证明了允许时变随机时滞的时滞比之传统的确定性时滞有更大的变化范围,因此我们的条件比确定性时滞更为保守.算例表明了文中所提方法的有效性.This paper is concerned with the robust stability of a class of linear uncertain stochastic systems with non- linear time-varying stochastic time-delay which is characterized by a Bernoulli stochastic process with given distribution probability in a given variation range. By constructing a new Lyapunov-Krasovskii functional, we derive for the system the sufficient conditions of mean-square exponential stability in terms of the linear matrix inequalities(LMIs), which can be checked readily by using MATLAB toolbox. The feature of our results is the conclusion of stability conditions being dependent not only on the probability distribution of the time-delay, but also on the upper bound of the its derivative. Mean- while, we also show that the allowable variation range of the time-varying stochastic time-delay can be greater than that of a deterministic time-delay in ensuring the same stability; this demonstrates the less conservativeness of our requirements than the traditional ones. An example is given to illustrate the effectiveness of the proposed method.
关 键 词:变时滞概率分布 不确定随机系统 自由权矩阵 鲁棒稳定 线性矩阵不等式
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.139.201