检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《机械科学与技术》2011年第8期1376-1380,共5页Mechanical Science and Technology for Aerospace Engineering
基 金:国家自然科学基金项目(50805071);云南省教育厅科学研究基金项目(08J0009)资助
摘 要:针对传统包络解调分析中窄带滤波参数难以确定和Hilbert解调的差频现象,提出了一种基于经验模态分解(EMD)和自适应形态滤波的解调方法,进行滚动轴承故障信息的分离和故障特征频率提取。该方法首先应用EMD的自适应滤波特性分离出故障产生的高频调制信号;然后利用基于峭度的自适应形态滤波方法对其进行解调分析,提取轴承故障特征。仿真及实验分析结果表明:该方法自适应较好,能量损失小,能有效地进行滚动轴承故障特征提取,利于轴承的早期故障诊断。It is hard to determine the parameters of narrowband filter and the difference frequency phenomenon of Hilbert demodulation using traditional envelope demodulation method. A demodulation method which was based on empirical mode decomposition (EMD) and adaptive morphological filtering was proposed to separate fault features and extract fault characteristic frequency of a rolling bearing. First, the high frequency modulated signal was ex- tracted using the adaptive filtering properties of EMD. Then, an adaptive morphological filtering method based on kurtosis was used to demodulate the high frequency modulated signal and extract the fault features of the rolling bearing. The results of simulation and experiment analysis indicate that the fault features of the wiling bearing can be effectively extracted using this method which is well adaptive and suffer little energy loss. It is good for diagnosing the early fault of rolling bearings.
关 键 词:包络解调 滚动轴承 经验模态分解 自适应形态滤波
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188