检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽农业大学轻纺工程与艺术学院,安徽合肥230036
出 处:《纺织学报》2011年第8期46-49,61,共5页Journal of Textile Research
摘 要:针对机织物透气性预测中存在非线性建模困难的问题,选择机织物总紧度、厚度、面密度及平均浮长等结构参数作为机织物透气性预测的影响因素,建立机织物透气性预测的投影寻踪回归模型。对模型训练样本的拟合值及检验样本的预测值以相对误差的均值及标准差为指标进行分析,并与BP神经网络及多元线性回归模型进行对比。结果表明,投影寻踪回归模型的拟合及预测精度均优于BP神经网络及多元线性回归模型,且在训练样本较少的情况下,投影寻踪回归模型仍有较高的预测精度和较强的泛化能力,可为机织物透气性预测提供一种新的方法。In view of the difficulty in nonlinear modeling for prediction of woven fabric permeability,a projection pursuit regression(PPR) model for prediction of air permeability of woven fabrics was established using the structural parameters such as the total tightness,thickness,and weight per square meter and average float as factors affecting the prediction of woven fabric permeability.The fitted values of tested samples and the predicted values of trained samples were analyzed with the means and standard deviations of relative error as the indicators and were compared with the results of BP neural network and multiple linear regression model.The results showed that the PPR model fitting and prediction accuracy was better than those of BP neural network and multiple linear regression model.In the case of less trained samples,the PPR model still had relatively high prediction accuracy and good generalization ability,providing a novel approach to the prediction of woven fabric permeability.
关 键 词:机织物 透气性 投影寻踪回归 预测模型 BP神经网络 多元线性回归
分 类 号:TS101.1[轻工技术与工程—纺织工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.207.122