检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学电子信息工程学院,南京210016 [2]南京大学计算机软件新技术国家重点实验室,南京210093
出 处:《中国图象图形学报》2011年第8期1393-1401,共9页Journal of Image and Graphics
基 金:光电控制技术重点实验室和航空科学基金联合资助项目(20105152026);南京大学计算机软件新技术国家重点实验室开放基金项目(KFKT2010B17)
摘 要:现有阈值分割方法中所用的交叉熵不满足距离度量对称性,且算法运行速度尚有提升空间,为此提出基于分解的2维对称交叉熵图像阈值分割方法。首先通过运用对称交叉熵描述分割前后图像之间的差异程度,分别导出1维和2维对称交叉熵阈值选取公式,给出相应的2维快速递推算法,计算复杂性由穷举搜索的O(L4)降到O(L2);然后将2维对称交叉熵法的运算转换到两个1维空间上,计算复杂性进一步降低到O(L)。实验结果表明,与现有的2维非对称交叉熵法相比,该方法具有更强的抗噪性,运行时间大幅减少,是一种更有效的2维交叉熵阈值分割方法。The cross-entropy in the existing thresholding methods does not satisfy the symmetricity of distance measure. And the computation speed of the algorithms can be further improved. Thus an image threshold selection method based on decomposition and two-dimensional symmetric cross-entropy is proposed in this paper. Firstly, the difference between the segmented image and the original one is measured by the symmetric cross-entropy. The threshold selection formulae are derived based on the one-dimensional and two-dimensional symmetric cross-entropy, respectively. A two-dimensional fast recursive algorithm is given, which makes the computation complexity reduced to O(L2 ) from O(L4 ) of full search. Then the computation of two-dimensional symmetric cross-entropy is converted into two one-dimensional spaces and its computation complexity is further reduced to O (L). The experimental results show that, compared with the existing threshold selection method based on two-dimensional nonsymmetric cross-entropy, the proposed method has stronger antinoise and the processing time is significantly reduced. It is an effective threshold selection method based on twodimensional cross-entropy.
关 键 词:图像分割 阈值选取 对称交叉熵 2维直方图 递推算法 分解
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.24.174