检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院寒区旱区环境与工程研究所,甘肃兰州730000 [2]西北师范大学物理与电子工程学院,甘肃兰州730070
出 处:《地球科学进展》2011年第8期795-804,共10页Advances in Earth Science
基 金:国家高技术研究发展计划重点项目"全球陆表特征参量产品生成与应用研究"子课题"陆面模拟与同化系统示范研究"(编号:2009AA122104);国家自然科学基金项目"基于鲁棒滤波方法的陆面数据同化系统误差估计与处理"(编号:41061038);国家杰出青年科学基金项目"流域尺度陆面数据同化系统研究"(编号:40925004)资助
摘 要:同化系统中的误差问题一直被认为是制约数据同化性能的瓶颈问题。从分析陆面数据同化系统的误差问题研究现状出发,统一定义了同化系统的误差来源及误差表现,简要综述了顺序同化方法及连续同化方法中的误差定义和相关理论问题。从误差估计的角度,重点介绍了目前研究中各种误差估计的方法和面临的困难。针对误差处理方法的研究,介绍了在集合数据同化中为减小误差常用的乘数放大法、附加放大法和松弛先验法等模型误差参数化方案,并且介绍了在实际数据同化系统中为减小系统偏差常采用状态增广法。最后总结讨论了各种误差估计与处理方法的特点及其在陆面数据同化中的应用前景和发展方向。As an important methodology for optimally merging Earth observation information and geophysical model output information,data assimilation has played an important role in the area of Earth observation.At present,great progress has been made in the theoretical and methodological exploration and foundation of the operational land data assimilation system.Due to the complexity of research objectives,error problems are thought to be the bottleneck for improving the performance of data assimilation systems.Firstly,the research statuses of error problems of Land Data Assimilation Systems are reviewed.Based on the mathematical descriptions of land surface process model and measurement process,error sources and error characteristic are unifying defined.In a word,data assimilation systems include model errors,observation errors and the algorithm errors.Secondly,with respect to the sequential and variational data assimilation methods,error definitions and the related theoretical problems of those methods are briefly introduced with the emphasis on the error sources and the fundamental error parameterization methods.Moreover,from the perspective of error estimation,several novel methods for estimating model errors are reviewed from three parts: the model input error estimation,the model parameters error estimation and the model structure error estimations.As for the observation errors,the error sources can be divided with the observation algorithm errors,the representative errors and the instrument errors.Beside some exiting methods,there are no more effectively methods to deal with those kinds of error.Meanwhile,the difficulties for implementing all those methods are clarified.Thirdly,in order to reduce the errors for ensemble data assimilation systems,the common error parameterization methods,such as multiplicative inflation methods,additive inflation methods and the relax-to-prior methods,are employed.All these methods for dealing with model errors are meant to ameliorate the bias error in ensemble second moment.As far
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28