检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《现代图书情报技术》2011年第7期97-103,共7页New Technology of Library and Information Service
基 金:国家自然科学基金项目"文本集特征提取方法及应用研究"(项目编号:70673070)的研究成果之一
摘 要:由于自然语言的复杂性,使得情感挖掘仍存在一些问题需要解决,如情感词的领域依赖性、隐式特征识别、同指特征处理和特征极性计算等。为解决这些问题,提出一种基于语义的情感挖掘方法,该方法以主题图为指导进行特征及情感词的识别和情感极性强度计算,充分利用特征之间及其特征与情感词之间的语义关系,可以在一定程度上提高意见挖掘的准确性。Due to the complexity of natural language, there are still some problems existing in sentiment mining such as : domain dependence of sentiment words, implicit features recognition, synonym recognition, the calculation of the fea- tures' sentiment strengths and so on. To solve these problems, this paper proposes a sentiment mining method based on topic map. This method, which makes full use of the semantic relationships between feature words and sentiment words, can improve the accuracy of the sentiment mining to certain extent.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74