检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学计算机学院,陕西西安710071
出 处:《电子学报》2011年第7期1698-1701,共4页Acta Electronica Sinica
基 金:国家自然科学基金(No.61072109);西安市科技局计划基金(No.CXY1015(3));中央高校基本科研业务费基金(No.JY10000903015)
摘 要:给出了边缘密度和线段复杂度的定义,并提出一种遥感图像中无水桥梁的识别新算法.首先对图像进行边缘提取,计算像素点的边缘密度,根据边缘密度进行图像分割,接着采用Hough变换提取直线,利用线段复杂度等确定疑似桥梁区域,然后计算疑似桥梁区域像素点的纹理特征,并构成一个特征矢量,最后将此特征矢量送入BPNN进行分类,统计该区域所有像素点的分类结果以判决是否属于桥梁.实验结果表明,该算法能够较好地识别出遥感图像中的无水桥梁目标.The definitions of the edge density and the segment complexity are given,and a novel algorithm for recognition of bridge without water under it in remote sensing image is proposed.Firstly,the edge is extracted with Canny operator,and the edge density for each pixel is calculated.The image is segmented base on the edge density.Secondly,the suspected bridge area is identified by a series of processing including using Hough transform to extract straight line and calculating segment complexity.Then texture features of the suspected bridge area are extracted to form a feature vector.Finally,each suspected bridge is classified by Back Propagation Neural Network(BPNN) based on this feature vector.The experimental results show that the algorithm can perform well to detect bridge targets.
关 键 词:目标识别 边缘密度 线段复杂度 纹理特征 误差反向传播神经网络
分 类 号:TP751.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117