检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学新型传感器与智能控制教育部重点实验室,太原030024
出 处:《煤矿机械》2011年第9期261-263,共3页Coal Mine Machinery
基 金:山西省科学技术发展计划资助(20080322020)
摘 要:利用金属磁记忆(MMM)技术进行故障检测时,较弱的故障信号提取成为检测准确度高低的关键。采用小波分析和奇异值分解相结合的方法,对金属磁记忆信号经行故障特征提取。通过小波分析将故障信号分解为不同尺度的分量,以形成初始向量特征矩阵,并对该矩阵进行奇异值分解,选择代表特征信号的奇异值分量重构,从而实现对故障信号的特征提取。经过实验证明该方法有效。The detection accuracy of metal magnetic memory (MMM) technology level was decided by extraction of weak fault signal. The fault characteristic signal of MMM was extracted with method of combining wavelet analysis and singular value decomposition (SVD). The fault signal was decomposed into different scale components with wavelet analysis. And SVD was applied to decompose characteristic matrix, which was composed with different scale components, into different subspace. With reconstruction of singular vectors, the signal features were extracted effectively. The experiments had shown that method was effective.
分 类 号:TH878[机械工程—仪器科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.179.20