钢绳芯输送带的磁记忆信号特征提取方法研究  被引量:1

Research on Signal Feature Extraction Method on Steel-cord Belt with Metal Magnetic Memory Testing

在线阅读下载全文

作  者:乔铁柱[1] 路晓宇[1] 王福强[1] 

机构地区:[1]太原理工大学新型传感器与智能控制教育部重点实验室,太原030024

出  处:《煤矿机械》2011年第9期261-263,共3页Coal Mine Machinery

基  金:山西省科学技术发展计划资助(20080322020)

摘  要:利用金属磁记忆(MMM)技术进行故障检测时,较弱的故障信号提取成为检测准确度高低的关键。采用小波分析和奇异值分解相结合的方法,对金属磁记忆信号经行故障特征提取。通过小波分析将故障信号分解为不同尺度的分量,以形成初始向量特征矩阵,并对该矩阵进行奇异值分解,选择代表特征信号的奇异值分量重构,从而实现对故障信号的特征提取。经过实验证明该方法有效。The detection accuracy of metal magnetic memory (MMM) technology level was decided by extraction of weak fault signal. The fault characteristic signal of MMM was extracted with method of combining wavelet analysis and singular value decomposition (SVD). The fault signal was decomposed into different scale components with wavelet analysis. And SVD was applied to decompose characteristic matrix, which was composed with different scale components, into different subspace. With reconstruction of singular vectors, the signal features were extracted effectively. The experiments had shown that method was effective.

关 键 词:金属磁记忆 小波分析 奇异值分解 特征提取 

分 类 号:TH878[机械工程—仪器科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象