检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋璐璐[1] 石慧[2] 吴迪[2] 魏萱[2] 谈黎虹[1] 何勇[2] 朱枫[1]
机构地区:[1]浙江经济职业技术学院,浙江杭州310018 [2]浙江大学生物系统工程与食品科学学院,浙江杭州310058
出 处:《红外》2011年第8期35-38,共4页Infrared
基 金:国家"十一五"科技支撑计划项目(2006BAD10A0403);浙江省教育厅科技项目(20071275)
摘 要:研究了基于可见-近红外光谱技术的制动液品牌混掺比例快速无损检测方法。全波段建立的偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)模型均得到了较好的预测结果。这两个模型的建模集和预测集的确定系数(r_c^2和r_p^2)均在0.98以上。采用连续投影算法(SPA)挖掘特征波长,最终选择了439nm、443nm、459nm、519nm、570nm、717nm、896nm和902nm共8个波长作为最优变量。基于SPA选择的变量建立的PLSR和LS-SVM模型的r_c^2和r_p^2均在0.97以上,能够满足实际应用的需要。研究结果表明,可见-近红外光谱可以用于制动液品牌混掺比例快速无损检测。A fast and non-invasive method for determining the mixture percentages of brake fluid based on visible and near infrared spectroscopy(Vis-NIRS) was proposed.Both a partial least square regression (PLSR) model and a least-square support vector machine(LS-SVM) model were established according to the spectra obtained in the whole wavelength range.With those two models,good prediction results were obtained.The determination coefficients of their calibration and prediction sets(r^2_c and r^2_p) were greater than 0.98.The successive projection algorithm(SPA) was used to select the effective variables. Finally,eight variables of 439 nm,443 nm,459 nm,519 nm,570 nm,717 nm,896 nm and 902 nm were selected as the optimal variables to be input into the PLSR and LS-SVM models.The r^2_c and r^2_p of both two models were greater than 0.97 which was adequate for practical application.It was concluded that Vis-NIRS could be used to fastly and non-invasively determine the mixture percentages of brake fluid.
关 键 词:可见-近红外光谱 制动液 品牌混掺 偏最小二乘回归 最小二乘支持向量机 连续投影算法
分 类 号:TG115.28[金属学及工艺—物理冶金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.5.237