基于小波去噪的改进灰色自适应变形预测  被引量:7

Deformation Forecast Using Improved Self-adaptive Grey Model Based on Wavelet Denoising

在线阅读下载全文

作  者:沙成满[1] 韩合新[2] 杨冬梅[2] 

机构地区:[1]东北大学资源与土木工程院,辽宁沈阳110819 [2]东北大学理学院,辽宁沈阳110819

出  处:《东北大学学报(自然科学版)》2011年第8期1195-1197,共3页Journal of Northeastern University(Natural Science)

基  金:辽宁省自然科学基金资助项目(20102058)

摘  要:针对变形量的预测问题,研究了基于小波去噪的改进灰色自适应预测模型.由于监测变形体时很多因素会使测量数据与实际变形数据有偏差,因此首先利用小波去噪方法对变形监测数据序列进行去噪处理,然后再利用灰色自适应模型预测变形量;并对模型的初值进行了修正.最后对一组基坑变形监测数据实例进行分析,表明该方法比单一灰色预测模型更加有效.An improved self-adaptive grey model based on wavelet denoising is studied to forecast the deformation of foundation trenches.As many factors may cause measured data to deviate from the real data during monitoring the deforming foundation trenches,a wavelet denoising method is first used to deal with the measured data of deformation.Then,the self-adaptive grey model is used to forecast the deformation with the initial value amended.An example based on the measured data of a foundation trench is given to show that deformation forecast results by the method combining the wavelet denoising and grey model is more precise than those by a conventional single grey model.

关 键 词:小波去噪 自适应模型 灰色模型 变形预测 基坑 

分 类 号:TU196[建筑科学—建筑理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象