检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南师范大学计算机与信息技术学院,新乡453007
出 处:《仪器仪表学报》2011年第8期1796-1802,共7页Chinese Journal of Scientific Instrument
基 金:河南省重点科技攻关项目(092102210017;102102210180)资助
摘 要:传统二维Tsallis熵阈值法主要由于对二维直方图采用近似假设等原因,导致分割结果不够准确,由此提出了基于二维直方图准分的Tsallis熵快速图像分割方法。首先,准确选择邻域模板构建二维直方图并将Tsallis熵法用于此直方图上以便提高分割性能;然后,舍弃二维直方图中关于主对角区域的概率和近似为1的假设而准确计算使阈值选取更准确;最后,结合Tsallis熵公式对二维直方图进行分析得到其特性和2个定理,利用此特性和2个定理导出新型、快速的递推算法来降低计算复杂度。实验结果表明,与传统二维Tsallis熵法相比,所提出的方法不仅分割更准确和抗噪性更强,而且占用的存储空间和运行时间都更少。Traditional two-dimensional (2-D) Tsallis entropy (TE) thresholding methods can not obtain accurate resuits mainly owing to the supposition that the sum of the probabilities of 2-D histogram main-diagonal region is approximately one. So a fast and precise 2-D TE image thresholding method is proposed in this paper. First, a 2-O his- togram is created through accurately selecting neighborhood template and the TE method is used on the 2-D histogram to improve the segmentation performance. Then, with precise calculation and discarding the above supposition, more accurate threshold can be obtained. Finally, considering the Tsallis entropy formula, the 2-D histogram is analyzed to obtain its features and two theorems, with which a new recursive approach is inferred to reduce the computation complexity. Experimental results show that the proposed method not only achieves more accurate segmentation results and more robust anti-noise capacity, but also requires much less memory space and running time, compared with tra- ditional 2-D TE thresholding methods.
关 键 词:图像分割 阈值法 TSALLIS熵 递推算法 准分法
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51