The essential rate of approximation for radial function manifold  被引量:1

The essential rate of approximation for radial function manifold

在线阅读下载全文

作  者:LIN ShaoBo CAO FeiLong XU ZongBeni 

机构地区:[1]Institute for Information and System Sciences, Xi'an Jiaotong University, Xi'an 710049, China [2]Institute of Metrology and Computational Sciences, China Jiliang University, Hangzhou 310018, China

出  处:《Science China Mathematics》2011年第9期1985-1994,共10页中国科学:数学(英文版)

基  金:supported by the National 973 Project (Grant No. 2007CB311002);National Natural Science Foundation of China (Grant Nos. 90818020,60873206)

摘  要:In this paper, we investigate the radial function manifolds generated by a linear combination of radial functions. Let Wp^r(B^d) be the usual Sobolev class of functions on the unit ball 54. We study the deviation from the radial function manifolds to WP^r(b^d). Our results show that the upper and lower bounds of approximation by a linear combination of radial functions are asymptotically identical. We also find that the radial function manifolds and ridge function manifolds generated by a linear combination of ridge functions possess the same rate of approximation.In this paper,we investigate the radial function manifolds generated by a linear combination of radial functions.Let Wpr(Bd) be the usual Sobolev class of functions on the unit ball B d.We study the deviation from the radial function manifolds to Wpr(Bd).Our results show that the upper and lower bounds of approximation by a linear combination of radial functions are asymptotically identical.We also find that the radial function manifolds and ridge function manifolds generated by a linear combination of ridge functions possess the same rate of approximation.

关 键 词:radial function rate of approximation Sobolev class ridge function 

分 类 号:O174.41[理学—数学] TP391.41[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象