基于Logistic组合模型的中国民用汽车保有量预测  被引量:14

Prediction of Civil Vehicles' Possession Based on Combined Logistic Model

在线阅读下载全文

作  者:任玉珑[1] 陈容[1] 史乐峰[1] 

机构地区:[1]重庆大学,重庆400044

出  处:《工业技术经济》2011年第8期90-97,共8页Journal of Industrial Technological Economics

基  金:中央高校研究生科技创新基金资助(项目编号:CDJXS11020024);国家自然科学基金资助项目(项目编号:90510016)

摘  要:经济的发展和人民生活水平的提高使我国民用汽车保有量急速上升,同时导致公共设施和能源供应等矛盾凸显。客观、准确的未来中国汽车保有量预测是解决上述问题的前提。本文以传统Lo-gistic模型为基础,借鉴灰色理论累加生成数据处理方法和级差格式,对预测参数进行估计,同时将模型中扩散速度函数化,并建立以误差标准差为权重的民用汽车保有量的Logistic组合预测模型。该模型能很好地避免传统预测模型中预测参数主观化,预测环境常态化的缺点,使模型能够客观、动态地反映未来中国汽车保有量的扩散趋势。最后结合中国历年民用汽车历史数据,对未来十年中国民用汽车保有量进行预测。预测结果表明:未来十年中国的民用汽车保有量还将快速增长,到2020年中国民用汽车保量将超过2.3亿辆。Economic development and the improvement d people's living standard lead to civil vehicles' possession shm'ply in creased, raeamCaile, which also cause various eontmdictions in public utilities, energy supply and so on. Solving these problems is premise that prediction d civil vehicles' possession is objective and accurate. Based on the analysis of traditional Logistic model, in the view of method accumulated generating data by Grey theory and the grade difference format, we estimate the parameter and fimctional the diffusion velocity in the prediction model, a combination forecast model is established, in this model the weight is standard deviation. This model can overcome the disadvantage of subjective selected parameters and enviroranent unchanged in traditional prediction model, and re- action the diffusion trend of future civil vehicles' possession more objective. We forecast the civilian vehicle population of ten years in future with the combination forecast model. The result of prediction showed that the civilian vehicle population will have a high growth between 2011 and 2020. and the nossession d civil vehicles will more than 230 million in 2020.

关 键 词:民用汽车保有量 LOGISTIC模型 组合预测 

分 类 号:F407.471[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象