检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]常州市规划设计院,江苏常州213003 [2]同济大学交通运输工程学院,上海201804
出 处:《交通信息与安全》2011年第4期92-98,共7页Journal of Transport Information and Safety
基 金:国家自然科学基金重点项目(批准号:50738004)资助
摘 要:基于检测器数据的路段行程时间估计通常具有精度不高和可靠性差的特点。论文引入了自适应式卡尔曼滤波,采用K近邻法寻找相似的交通流状态来标定状态转移系数,建立了基于固定型检测器数据和移动型检测器数据的路段行程时间估计融合模型。实际数据的验证结果是,平均相对误差为9.52%,相对误差的标准差为8.92%。研究表明,与基于移动检测器数据的估计方法相比较,该方法极大地改善了估计精度和可靠性,还具有收敛速度快、对初值不敏感、参数少等特点。The estimated link travel time based on detector data have two features: low accuracy and poor reliability. The adaptive Kalman filter and K-nearest Neighbor (K-NN) are introduced to estimate link travel time based on fixed detector data and mobile detector data in this paper. The results show that the average relative error is 9.52% and the standard deviation of relative error is 8.92%. The accuracy and reliability of the estimation are largely improved when compared with those based on mobile detector data. In addition, the method converges rapidly, involves fewer parameters, and is also insensitive to initial values.
关 键 词:路段行程时间 固定型检测器 移动型检测器 数据融合 自适应式卡尔曼滤波 K近邻
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.162.188