检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军大连舰艇学院训练部模拟训练中心,大连116018
出 处:《计算机与数字工程》2011年第8期18-20,68,共4页Computer & Digital Engineering
摘 要:文章研究水面舰艇减摇问题,采用PID神经元网络控制方法。舰艇在大风浪条件下产生剧烈横摇,减摇鳍是目前应用最为广泛的减摇装置之一。鳍角与升力矩的水动力特性主要依靠静态实验获取,实际使用中,鳍控制力矩与鳍角呈复杂非线性关系,使水动力特性存在较大误差。为解决升力系数及航速等反馈中的重要参数不确定性而导致鳍角产生的力矩难以确定的问题,提出一种基于PID神经元网络的减摇方法。构造三层神经网络模型,将比例、积分、微分分别作为网络的隐含层单元,在减摇控制过程中动态调整鳍控制参数,仿真结果表明,PID神经元网络控制横摇系统,实时性能好,稳定性高,有较好的稳定舰艇横摇效果。Surface vessels rolling reduction problem with PID neural networks control method is researched. Ships vi- brate violently under the severe sea condition, stabilize fins is the most widely used device to reduce ship's rolling. The acqui sition of fins' water dynamic torque characteristics rely mainly on static experiment. In actual application moment, the fin an= gle and lift torque shows complicated nonlinear relation, and it made water dynamic characteristic variate with severe error. To solve the problem that important feedback parameters are uncertain, such as lift coefficient and the speed, this paper present a stabilize method based on PID neural networks. A three layer neural network model is constructed, proportion, in- tegral and differential units are used as network hide layer in the control process, adjust fins control parameters dynamically. Simulation result shows., the PID neural networks stabilizing system performs quickly, smoothly and effectively.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117