基于最近邻思想的K-均值算法  

在线阅读下载全文

作  者:李金广[1] 刘家磊[1] 

机构地区:[1]安阳工学院

出  处:《中国科技信息》2011年第17期49-50,共2页China Science and Technology Information

摘  要:K-均值聚类算法是一种基于划分方法的聚类算法,本文通过对传统的K-均值聚类算法的分析,提出了一种改进的K-均值算法,并对该算法的时间复杂度和空间复杂度进行了分析。该算法在计算聚类中心点时采用了一种最近邻的思想,可以有效地去除"噪声"和"孤立点"对簇中平均值(聚类中心)的影响,从而使聚类结果更加合理。最后通过实验表明该算法的有效性和正确性。

关 键 词:数据挖掘 聚类 K-均值 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象