检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山西大学计算机与信息技术学院,太原030006 [2]山西大学计算智能与中文信息处理教育部重点实验室,太原030006
出 处:《计算机工程与应用》2011年第24期97-99,114,共4页Computer Engineering and Applications
基 金:国家自然科学基金(No.60975035;No.71031006);教育部博士点基金(No.20091401110003);山西省自然科学基金重点项目(No.2009011017-2);山西省回国留学人员科研资助项目(No.2008-14)~~
摘 要:通过多维关联规则挖掘,将粒度计算(Granular Computing,GrC)和支持向量机(Support Vector Machine,SVM)有效融合,提出一种粒度支持向量机(Granular SVM,GSVM)学习方法,称为AR-GSVM。该方法用于非平衡数据处理时,不仅可以有效降低分类器的复杂性,而且本质上可以进行并行计算以提高学习效率,同时提高分类器的泛化能力。考虑到保持数据在原始空间和特征空间的分布一致性,在AR-GSVM的基础上又提出核空间上的粒度支持向量机学习方法,称为AR-KGSVM,该方法具有更好的泛化性能。通过在UCI数据集上的实验表明:AR-GSVM和AR-KGSVM的泛化能力优于一些常用非平衡数据处理的方法。Through the mining of multi-dimension association rules,Granular Computing(GrC) and Support Vector Machine(SVM) are efficiently amalgamated,and a Granular Support Vector Machine(GSVM) learning approach is proposed,namely AR-GSVM.For imbalanced datasets,AR-GSVM can not only reduce the complexity of the classifier,but also improve learn-ing efficiency and generalization performance.Considering the data distribution consistence in the input space and kennel space,another granular SVM model on kennel space based on AR-GSVM is proposed,which is named as AR-KGSVM.AR-KGSVM can obtain better generalization performance comparing with AR-GSVM.The experimental results on UCI datas-ets demonstrate that the generalization performances of AR-GSVM and AR-KGSVM are superior to some most common used methods in dealing with imbalanced datasets.
关 键 词:支持向量机 粒度计算 粒度支持向量机 关联规则 非平衡数据
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3