Solution of the HJI equations for nonlinear H_∞ control design by state-dependent Riccati equations approach  被引量:1

Solution of the HJI equations for nonlinear H_∞ control design by state-dependent Riccati equations approach

在线阅读下载全文

作  者:Xueyan Zhao Feiqi Deng 

机构地区:[1]Institute of Systems Engineering, South China University of Technology, Guangzhou 510640, E R. China

出  处:《Journal of Systems Engineering and Electronics》2011年第4期654-660,共7页系统工程与电子技术(英文版)

基  金:supported by the National Natural Science Foundation of China(60874114)

摘  要:The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix equations for partial derivates of the solution of the SDREs and introducing symmetry measure for some related matrices, a method is proposed for examining whether the SDRE method admits a global optimal control equiva- lent to that solved by the HJI equation method. Two examples with simulation are given to illustrate the method is effective.The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix equations for partial derivates of the solution of the SDREs and introducing symmetry measure for some related matrices, a method is proposed for examining whether the SDRE method admits a global optimal control equiva- lent to that solved by the HJI equation method. Two examples with simulation are given to illustrate the method is effective.

关 键 词:nonlinear system robust control Hamilton-Jacobi-Isaacs (HJI) equation state-dependent Riccati equation (SDRE) global stabilization optimal control. 

分 类 号:O175.1[理学—数学] TP13[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象