基于时空分析的视频前景提取  

Video Foreground Segmentation Based on Analysis of Spatial-Temporal Information

在线阅读下载全文

作  者:闵华清[1] 陈聪[1] 罗荣华[1] 朱金辉[1] 

机构地区:[1]华南理工大学计算机科学与工程学院,广州510006

出  处:《模式识别与人工智能》2011年第4期582-590,共9页Pattern Recognition and Artificial Intelligence

基  金:国家自然科学基金项目(No.61005061;60873078);中央高校基本科研基金项目(No.2009ZM0123);广东省科技攻关项目(No.2009A040300008;2010B010600016)资助

摘  要:为了从包含动态背景或者非平移运动前景的视频中提取完整的前景区域,提出一种视频分割算法.首先,将视频中单个像素的变化过程视为离散时间信号,运用时间轴的Gabor滤波对时域信息进行分析,将视频粗分为前景和背景;然后,运用均值漂移算法对前景和背景做颜色聚类分析,分析空域的颜色关联信息,分别建立全局颜色模型和局部颜色模型;最后,运用双重标记法提取视频前景.该算法综合考虑视频的时域信息和空域信息.在多个视频库的测试结果表明,该算法可以显著提高前景区域提取的精度,特别是对于背景动态变化或者前景发生非平移运动的视频.An algorithm is proposed to segment foreground accurately from videos whose background is dynamic or whose foreground performs non-translational motion. Firstly, by regarding the change process of a single pixel as discrete-time signal, the video is segmented into foreground and background in a glancing way with temporal analysis using Gabor filter. Secondly, global color model and local color model are defined and built by clustering the color information of the background and foreground with mean-shift algorithm. Finally, a double-labeling method is used for fine segmentation of the foreground. Experimental results on several datasets prove that the proposed algorithm evidently improves the precision of the extracted foreground, especially in the cases that the background is dynamic or the foreground performs non-translational motion.

关 键 词:前景提取 GABOR滤波 均值漂移 颜色模型 双重标记 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象