Intersubband transitions in Al_(0.82)In_(0.18)N/GaN single quantum well  

Intersubband transitions in Al_(0.82)In_(0.18)N/GaN single quantum well

在线阅读下载全文

作  者:王宇宙 李丁 李磊 刘宁炀 刘磊 曹文彧 陈伟华 胡晓东 

机构地区:[1]State Key Laboratory of Artificial Microstructure and Mesoscopic Physics,School of Physics,Peking University

出  处:《Chinese Physics B》2011年第9期226-231,共6页中国物理B(英文版)

基  金:Project supported by the National High Technology Research and Development Program of China (Grant No.2007AA03Z403);the National Natural Science Foundation of China (Grant Nos.61076013 and 60776042);the National Basic Research Program of China (Grant No.2006CB921607)

摘  要:The influence of the width of a lattice-matched A10.82In0.18N/GaN single quantum well (SQW) on the absorption coefficients and wavelength of the intersubband transition (ISBT) has been investigated by solving the Schr5dinger and Poisson equations self-consistently. The wavelength of 1-2 ISBT increases with L, the thickness of the single quantum well, ranging from 2.88 ~m to 3.59 ~.m. The absorption coefficients of 1-2 ISBT increase with L at first and then decrease with L, with a maximum when L is equal to 2.6 nm. The wavelength of 1-3 ISBT decreases with L at first and then increases with L, with a minimum when L is equal to 4 nm, ranging from approximately 2.03 p^m to near 2.11 p.m. The absorption coefficients of 1-3 ISBT decrease with L. The results indicate that mid-infrared can be realized by the A10.s2In0.1sN/GaN SQW. In addition, the wavelength and absorption coefficients of ISBT can be adjusted by changing the width of the SQW.The influence of the width of a lattice-matched A10.82In0.18N/GaN single quantum well (SQW) on the absorption coefficients and wavelength of the intersubband transition (ISBT) has been investigated by solving the Schr5dinger and Poisson equations self-consistently. The wavelength of 1-2 ISBT increases with L, the thickness of the single quantum well, ranging from 2.88 ~m to 3.59 ~.m. The absorption coefficients of 1-2 ISBT increase with L at first and then decrease with L, with a maximum when L is equal to 2.6 nm. The wavelength of 1-3 ISBT decreases with L at first and then increases with L, with a minimum when L is equal to 4 nm, ranging from approximately 2.03 p^m to near 2.11 p.m. The absorption coefficients of 1-3 ISBT decrease with L. The results indicate that mid-infrared can be realized by the A10.s2In0.1sN/GaN SQW. In addition, the wavelength and absorption coefficients of ISBT can be adjusted by changing the width of the SQW.

关 键 词:Alo.s2Ino.lsN/GaN single quantum well optoelectronic devices MID-INFRARED intersub-band transition 

分 类 号:O471.1[理学—半导体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象