Dirac-Lu Space with Pseudo-Riemannian Metric of Constant Curvature  

Dirac-Lu Space with Pseudo-Riemannian Metric of Constant Curvature

在线阅读下载全文

作  者:Xin An REN Li CHEN Gui Dong WANG 

机构地区:[1]Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, P. R. China [2]College of Science, Shandong University of Technology, Zibo 255091, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2011年第9期1743-1752,共10页数学学报(英文版)

摘  要:In this paper, we will discuss the geometries of the Dirac-Lu space whose boundary is the third conformal space Af defined by Dirac and Lu. We firstly give the S0(3, 3) invariant pseudo- Riemannian metric with constant curvature on this space, and then discuss the timelike geodesics. Finally we get a solution of the Yang-Mills equation on it by using the reduction theorem of connections.In this paper, we will discuss the geometries of the Dirac-Lu space whose boundary is the third conformal space Af defined by Dirac and Lu. We firstly give the S0(3, 3) invariant pseudo- Riemannian metric with constant curvature on this space, and then discuss the timelike geodesics. Finally we get a solution of the Yang-Mills equation on it by using the reduction theorem of connections.

关 键 词:Dirac-Lu space invariant metric Yang-Mills equation 

分 类 号:O186.12[理学—数学] O4-09[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象