检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学信息科学与技术学院,四川成都610031
出 处:《计算机工程与设计》2011年第9期3166-3169,共4页Computer Engineering and Design
摘 要:为解决普通支持向量机多类分类器对车牌字符识别准确率低、速度慢等问题,研究了基于支持向量机二叉分类树的车牌字符识别算法。根据车牌字符的结构特征提出了利于字符分类的粗像素特征提取方案,并对字符进行相应的特征提取,通过KL变换对生成的特征向量进行降维处理以提高字符识别速度,最后利用Fisher判别准则构造支持向量机二叉分类树,保证每类字符均具有最大可分离性,提高了字符识别率。对车牌字符集进行了识别测试,实验结果表明了该算法的可行性和有效性。To solve the problems of low accuracy and speed of License Plate character recognition based on general support vector machine multi-class classifier effectively,an algorithm of character recognition based on support vector machine binary classification is studied.Firstly,the scheme of coarse pixel feature extraction is proposed,which is helpful for character classification according to the structure of character,and then,character image features are extracted by coarse pixel feature algorithm and the primitive feature vectors will be acquired and decreased by KL transformation to improve the speed of character recognition.Finally,the Support Vector Machine binary classification trees based on Fisher criterion are built,which can guarantee the maximal class separability of every character set and improve recognition accuracy.In the experiment of character recognition,the results show the feasibility and effectiveness of the algorithm.
关 键 词:支持向量机 特征向量 字符识别 KL变换 二叉树
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.42.23