检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100191 [2]河北体育学院网络中心,河北石家庄050041 [3]北京航空航天大学计算机学院,北京100191 [4]北京航空航天大学网络技术北京市重点实验室,北京100191
出 处:《电子学报》2011年第8期1739-1745,共7页Acta Electronica Sinica
基 金:国家863高技术研究发展计划(No.2005AA113040);北京市教育委员会共建项目建设计划(No.JD100060630);河北省高等学校自然科学研究项目(No.Z2010279)
摘 要:提出基于数据场高斯势约简概率神经网络结构,基本思路:引入数据场估计训练集各类概率密度,选择局部极大密度估计样本构造网络;对初始网络迭代训练,依次扩展各类具有最大密度估计值的误分样本至模式层并调整权重参数,直至满足指定精度.采用增量密度计算,保证快速迭代和高概率收敛.基于重采样技术进一步提升泛化精度.实验表明,提出的算法解释精练、拟合优度适中、计算高效.This paper proposed to decrease the structure of probabilistic neural network based on Gaussian potential of data field.Core idea is following:Introduce data field to estimate probabilistic density of training set of each class and select their maximum to construct the network;iteratively train the initial network by appending the maximum density sample unrecognized of each class to pattern layer and modify the weight of samples until satisfying desired accuracy.Incremental computing density ensures faster iteration and higher possible convergence.And introduce resampling technique to boost the generalization accuracy.Experiments show that the proposed algorithms have concise explanation,moderate fitness and effective calculation.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117