检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈树强[1]
机构地区:[1]电子科技大学物理电子学院,四川成都610054
出 处:《电子学报》2011年第8期1878-1882,共5页Acta Electronica Sinica
基 金:中央高校基本科研业务费专项资金资助研究项目
摘 要:耦合波分析法(RCWA)方法是目前研究光栅衍射最普遍的方法.垂直入射到光栅表面的光使衍射光的正负N级衍射波处于对称状态,使得在RCWA法中原先需要计算2N+1级衍射的2N+1阶矩阵问题降低到计算N+1级衍射的N+1阶矩阵问题.本文将这种对称结构的简化方法推广到非垂直入射、光栅条纹在入射平面内的情况,使得在这种耦合情况下的2(2N+1)阶矩阵问题简化为2(N+1)阶矩阵问题.同时针对小角度入射的情况提出了进一步简化计算方法将其简化为(N+1)阶矩阵问题.实验表明在较大的范围内,其误差均可接受,在工程应用具有重要的意义.The rigorous couple wave analysis(RCWA) is one of the most common methods for the study of grating diffraction.For the incident beam normal to the surface of the grating,the positive and negative N diffraction orders are same due to the symmetry,which lead to the great simplified in by decreasing matrix size from 2N+1 to N+1.In this paper,the simplified method is extended to the case that the incident plane parallel to the grating line.In this case,the problem of matrix size 2(2N+1)(due to the coupling of different polarization states) can be reduced to the problem of matrix size 2(N+1).Furthermore,some more simple approach for the small incident angle is discussed,in which the problem of matrix size 2(N+1) can be reduced to(N+1).The typical simulation shows that the error is acceptable in quite a large range,which is important in practical use.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3