二维饱和多孔介质因点汇诱发比奥固结的解析解  被引量:5

An analytical solution of two-dimensional Biot's consolidation due to a point sink within a saturated porous media

在线阅读下载全文

作  者:李培超[1] 

机构地区:[1]上海工程技术大学机械工程学院,上海201620

出  处:《岩土力学》2011年第9期2688-2691,共4页Rock and Soil Mechanics

基  金:上海高校选拔培养优秀青年教师科研专项基金(No.gjd09029);上海市重点学科建设项目资助(No.P1401)

摘  要:给出了有限二维饱和多孔介质因点汇诱发的Biot固结的一个解析解。其中假设多孔介质为均匀各向同性和线弹性,假设孔隙压力场符合第1类边界条件,数学模型采用可压缩多孔介质模型。利用傅里叶和拉普拉斯变换及相应反演获得了双重无穷项级数和形式的精确解。然后特别探讨了定流量点汇诱发的稳态解析解,并用文献现有解析解进行了验证。所提出的解析解适合于验证数值解,并可用于深入分析有限二维多孔介质的流-固耦合行为。An analytical solution is proposed for the Biot's consolidation theory within a finite two-dimensional(2D),isotropic,homogeneous,and fluid-saturated poroelastic media due to a point sink when the pore pressure is prescribed on the boundary.The analysis is based on compressible porous media models.Fourier and Laplace transforms and related inversions are implemented;and the exact solutions in the form of double summations of infinite series are obtained.In particular,the steady-state analytical solution due to a point sink of constant pumping rate is presented and validated by the exact solution available in the literature.The proposed analytical solution is applicable for testing the accuracy of numerical schemes;and it also can be used to further understand the behaviour of flow and deformation coupling in a finite 2D domain.

关 键 词:有限二维孔隙弹性介质 BIOT固结 有限正余弦变换 解析解 

分 类 号:O357.3[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象