检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学电子科学与技术系,合肥230027
出 处:《中国科学院研究生院学报》2011年第5期630-635,共6页Journal of the Graduate School of the Chinese Academy of Sciences
基 金:国家自然科学基金(61071173)资助
摘 要:提出了一种基于迭代自适应机制的改进算法,有效地缩减了分层置信传播算法(HBP)的计算时间.传统HBP计算时间随指定的迭代上限增加而线性增长.为此引入消息收敛的条件判断,在迭代上限相同情况下,减少算法的迭代次数,缩减整体迭代时间.实验表明,与传统HBP相比,该方法计算时间缩减了38%以上,计算时间对整体迭代上限不敏感.该方法可以应用于使用HBP算法的其他方法.We propose a self-adaptive algorithm with convergence detection to reduce the computational complexity of HBP.In the conventional HBP,the computational complexity linearly increases with specified iteration upper bound.We introduce convergence detection to stop the iteration of messages which have already converged to optimal values.Experimental results show that the self-adaptive algorithm reduces computational time by 38% or more,and the computational time is insensitive to iteration upper bound.The convergence detection methodology can be used in other HBP-related applications.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.165.245