检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子工程学院脉冲功率激光技术国家重点实验室,安徽合肥230037
出 处:《合肥工业大学学报(自然科学版)》2011年第9期1345-1349,共5页Journal of Hefei University of Technology:Natural Science
基 金:安徽省自然科学基金资助项目(090412067)
摘 要:文章提出一种基于PSO思想的改进量子遗传算法。将PSO中的合作机制和记忆功能引入到QGA中,构造种群个体与当前最优解的距离参量,根据每个个体与当前最优解距离大小智能地控制旋转角的大小,使旋转角能够根据个体的进化差异选择不同旋转角的自适应调整进化过程,从而使算法始终保持合适的搜索网格,加快算法收敛,同时也可以保证能够收敛到全局最优,避免早熟;并通过典型函数的测试验证了该算法的可行性和有效性。This paper proposes an improved quantum genetic algorithm(QGA) based on the theory of particle swarm optimization(PSO).The cooperation mechanisms and memory function in PSO are introduced into QGA and the distance parameter is constructed between the population individual and the current optimal solution.Quantum rotation counter controlled by the distance parameter can be chosen according to individual differences of evolution to adjust the whole evolution adaptively,so that the algorithm can always keep suitable searching grid to speed up the convergence rate.The algorithm also avoids falling into local minimum and the global optimal solution can be obtained.The test results based on typical functions show that the proposed algorithm is feasible and effective.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222