检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2011年第26期25-26,69,共3页Computer Engineering and Applications
基 金:山东省优秀中青年科学家科研奖励基金(No.BS2010DX027)
摘 要:基于动态粗集理论,提出了一种改进的动态粗集K-均值算法。改进后的算法依据数据对象的迁移系数大小,被划分到某一类的膨胀上近似集或膨胀下近似集;在计算类的质心时采用其中数据对象集的迁移系数的平均值作为权值来衡量它对质心的贡献。在UCI机器学习数据库原始数据集及其噪音数据集上的实验结果表明,改进后的动态粗集K-均值算法提高了聚类的准确性,降低了迭代次数。Based on the theory of dynamic rough set,a dynamic rough K-means clustering algorithm is presented.The new algorithm divides samples into a cluster according to the transition coefficient.When calculating the centroids the average of transition coefficients are used as weight,which represents the contributions of the samples to the cluster.Experiments on UCI data sets and on generated data sets with noise points prove this algorithm can get better clustering accuracy and reduce the iteration times.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.219.214