转子振动故障的小波能谱熵SVM诊断方法  被引量:24

Rotor vibration fault diagnosis method based on wavelet energy spectrum entropy and SVM

在线阅读下载全文

作  者:艾延廷[1] 费成巍[1] 

机构地区:[1]沈阳航空航天大学动力与能源工程学院,沈阳110136

出  处:《航空动力学报》2011年第8期1830-1835,共6页Journal of Aerospace Power

基  金:航空科学基金(2008ZB54006)

摘  要:融合小波能谱熵和支持向量机(SVM)的特点,提出了基于小波能谱熵的SVM故障诊断方法.利用转子试验台对转子典型振动故障进行模拟并采集振动数据,提取其振动信号的小波能谱熵作为特征向量,通过样本训练建立了转子在各种典型振动故障状态下的SVM模型和多类分类器,进而实现了对未知转子振动故障的识别.实际应用表明,提出的转子振动故障诊断方法是可行和有效性的.A method for rotor vibration fault diagnosis was proposed based on wavelet energy spectrum entropy and support vector machine (SVM) by fusing their advantages. The typical rotor vibration faults were simulated on the rotor test-bed and vibration signals were collected at the same time. The SVM model and multi-classifier for rotor typical faults diagnosis were established through training of the samples obtained, and the unknown rotor faults were recognized consequently. It is proved by practical applications that the method proposed in this paper for diagnosing rotor vibration faults is workable and effective.

关 键 词:转子振动 故障诊断 小波能谱熵 支持向量机 特征向量 故障模拟 

分 类 号:V231.92[航空宇航科学与技术—航空宇航推进理论与工程] TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象