五点八边图的完美T(G)-三元系  

Perfect T(G)-triple System for Each Subgraph G of K_5 with Eight Edges

在线阅读下载全文

作  者:侯英涛[1] 康庆德[2] 张艳丽[3] 

机构地区:[1]保定电力职业技术学院基础教学部,保定071051 [2]河北师范大学数学研究所,石家庄050016 [3]石家庄经济学院华信学院科学技术系,石家庄050091

出  处:《应用数学学报》2011年第5期830-837,共8页Acta Mathematicae Applicatae Sinica

基  金:国家自然科学基金(10971051);河北省自然科学基金(A2010000353)资助项目

摘  要:设G是K_n的子图.在G的每边外添加一点,将该边扩展为一个3长圈,且所添加的点两两不同,均异于G的诸顶点,这样得到的图形被记为T(G).如果3K_n的边恰好能够分拆成与T(G)同构的一些子图,则称这些子图构成一个n阶的T(G)-三元系.进而,若此分拆的全体内部边又恰构成K_n中全部边的一个分拆,则称这个T(G)-三元系是完美的.对于所有使得完美T(G)-三元系存在的正整数n的集合称为完美T(G)-三元系的存在谱.对于K_4的所有子图及K_5的7边以下子图G,其完美T(G)-三元系的存在性问题已经在一系列文章中被完全解决.本文将对不含孤立点的全部五点八边图G,确定完美T(G)-三元系的存在谱.Let G be a subgraph of Kn. The graph obtained from G by replacing each edge with a 3-cycle whose third vertex is distinct from other vertices in the configuration is called a T(G)-triple. An edge-disjoint decomposition of 3Kn into copies of T(G) is called a T(G)-triple system of order n. If, i:a each copy of T(G) in a T(G)-triple system, one edge is taken from each 3-cycle (chosen so that these edges :~orm a copy of G) in such a way that the resulting copies of G form an edge-disjoint decomposition of Kn, then the T(G)-triple system is said to be perfect. The set of positive integers n for which a perfect T(G)-triple system exists is called its spectrum. A series of earlier papers determined the spectra for cases where G is any subgraph of K4. Then, in our previous paper, the spectrum of perfect T(G)-triple systems for each graph G with five vertices and i(≤7) edges was determined. In this paper, we will completely solve the spectrum problem of perfect T(G)-triple system for each subgraph G of K5 with eight edges.

关 键 词:T(G) T(G)-三元系 完全T(G)-三元系 

分 类 号:O157[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象