检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学信息科学与技术学院,江苏南京210016
出 处:《智能系统学报》2011年第4期333-338,共6页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金资助项目(60872065)
摘 要:针对现有车牌定位算法定位准确率不高和速度慢等问题,结合车牌纹理特征,提出了一种基于Tent映射混沌粒子群(CPSO)的车牌精确定位算法.首先用基于二维直方图区域斜分的OTSU方法对车牌图像做二值化处理;接着使用三组一维滤波器获取其二值纹理特征向量.然后利用基于Tent映射CPSO快速准确的全局搜索能力,结合二值纹理特征向量构造适应度函数,并引入车牌纹理的一致性度量作为判决条件,找到车牌区域的最佳定位参量.最后,与基于遗传算法(GA)和基本粒子群算法(BPSO)的定位方法进行了比较.实验结果表明,该方法适应性强,定位效果较好,运行时间更短.Considering the problems of the low precision ratio and slow arithmetic speed of license plate location, an accurate license plate location method based on tent chaotic particle swarm optimization (TCPSO) was proposed by combining the texture features. First, binarization was adopted to segment the license plate image by the OTSU method, which is based on a 2-D histogram oblique. Then the texture feature vector was obtained by three one-di- mensional filters. With the rapid and accurate searching ability, the best location parameters of license plate area were found by constructing the fitness function with the texture feature vector when introducing the texture coher- ence into the judgment. At last, the proposed method was compared with a genetic algorithm (GA) and BPSO. The experimental results show that the proposed method has stronger adaptability, better location effect, and shorter running time.
关 键 词:车牌纹理特征 TENT映射 混沌 粒子群优化 车牌定位
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.230.250