基于特征分选策略的中文共指消解方法  被引量:2

Chinese Coreference Resolution Method Based on Feature Respective Selection Strategy

在线阅读下载全文

作  者:李渝勤[1,2] 甘润生[1] 杨永红[3] 施水才[1,2] 

机构地区:[1]北京信息科技大学计算机学院,北京100101 [2]北京拓尔思信息技术股份有限公司,北京100101 [3]中山大学信息科学与技术学院计算机科学系,广州510275

出  处:《计算机工程》2011年第18期180-182,共3页Computer Engineering

基  金:国家"863"计划基金资助重点项目(2006AA010105);国家自然科学基金资助项目(60772081);北京市自然科学基金资助项目(4092015);北京市教委科技发展计划基金资助项目(KM201010772023)

摘  要:针对基于机器学习的中文共指消解中不同类别名词短语特征向量的使用差异,提出一种基于特征分选策略的方法。该方法在选择特征向量时对人称代词和普通名词短语分别处理,充分利用不同名词短语的已有特征进行共指消解,并减少部分无效特征在共指消解过程中产生的"噪声"。实验结果表明,该中文共指消解方法能提高共指消解的性能,F值达到80.72%。This paper studies different features based up on the type of noun phrase in Chinese coreference resolution based on machine learning,and proposes features selection strategy to be applied to coreference resolution,the approach selects pronouns and other noun phrases features respectively,so this method can reduce some "noise" and utilize features effectively.Experimental results show that the method can improve the performance of coreference resolution system,and F-measure reaches 80.72%.

关 键 词:共指消解 特征选择 自然语言处理 支撑向量机 数据词典 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象