Infinitely many pairs of cospectral integral regular graphs  

Infinitely many pairs of cospectral integral regular graphs

在线阅读下载全文

作  者:WANG Li-gong SUN Hao 

机构地区:[1]Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China.

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2011年第3期280-286,共7页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China (10871158, 70871098);the Natural Science Basic Research Plan in Shaanxi Province of China (SJ08A01, 2007A09) and SRF for ROCS, SEM

摘  要:A graph G is called integral if all the eigenvalues of the adjacency matrix A(G) of G are integers. In this paper, the graphs G4(a, b) and Gs(a, b) with 2a + 6b vertices are defined. We give their characteristic polynomials from matrix theory and prove that the (n + 2)-regular graphs G4(n, n+ 2) and G5(n, n + 2) are a pair of non-isomorphic connected cospectral integral regular graphs for any positive integer n.A graph G is called integral if all the eigenvalues of the adjacency matrix A(G) of G are integers. In this paper, the graphs G4(a, b) and Gs(a, b) with 2a + 6b vertices are defined. We give their characteristic polynomials from matrix theory and prove that the (n + 2)-regular graphs G4(n, n+ 2) and G5(n, n + 2) are a pair of non-isomorphic connected cospectral integral regular graphs for any positive integer n.

关 键 词:EIGENVALUE integral graph cospectral graph graph spectrum. 

分 类 号:O157.5[理学—数学] TP391.41[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象