检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LI Dong-mei LIU Jin-wang LIU Wei-jun
机构地区:[1]School of Mathematical Sciences and Computing Technology, Central South University, Changsha410075, China [2]School of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2011年第3期287-294,共8页高校应用数学学报(英文版)(B辑)
基 金:Supported by the NSFC (10771058, 11071062, 10871205), NSFH (10JJ3065);Scientific Research Fund of Hunan Provincial Education Department (10A033);Hunan Provincial Degree and Education of Graduate Student Foundation (JG2009A017)
摘 要:The notion of weakly relatively prime and W-Gr6bner basis in K[x1, x2,…, xn] are given. The following results are obtained: for polynomials fl, f2, ..., fm, {f1^λ1, f2^λ2,…, fm^λm} is a GrSbner basis if and only if f1, f2, …, fm are pairwise weakly relatively prime with λ1, λ2, …, λm arbitrary non-negative integers; polynomial composition by θ = (θ1,θ2, …, θn) commutes with monomial-Grobner bases computation if and only if θ1, θ2, , θm are pairwise weakly relatively prime.The notion of weakly relatively prime and W-Gr6bner basis in K[x1, x2,…, xn] are given. The following results are obtained: for polynomials fl, f2, ..., fm, {f1^λ1, f2^λ2,…, fm^λm} is a GrSbner basis if and only if f1, f2, …, fm are pairwise weakly relatively prime with λ1, λ2, …, λm arbitrary non-negative integers; polynomial composition by θ = (θ1,θ2, …, θn) commutes with monomial-Grobner bases computation if and only if θ1, θ2, , θm are pairwise weakly relatively prime.
关 键 词:W-Grobner basis weakly relatively prime polynomial composition.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.206.240