W-Grbner basis and monomial ideals under polynomial composition  

W-Grbner basis and monomial ideals under polynomial composition

在线阅读下载全文

作  者:LI Dong-mei LIU Jin-wang LIU Wei-jun 

机构地区:[1]School of Mathematical Sciences and Computing Technology, Central South University, Changsha410075, China [2]School of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201, China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2011年第3期287-294,共8页高校应用数学学报(英文版)(B辑)

基  金:Supported by the NSFC (10771058, 11071062, 10871205), NSFH (10JJ3065);Scientific Research Fund of Hunan Provincial Education Department (10A033);Hunan Provincial Degree and Education of Graduate Student Foundation (JG2009A017)

摘  要:The notion of weakly relatively prime and W-Gr6bner basis in K[x1, x2,…, xn] are given. The following results are obtained: for polynomials fl, f2, ..., fm, {f1^λ1, f2^λ2,…, fm^λm} is a GrSbner basis if and only if f1, f2, …, fm are pairwise weakly relatively prime with λ1, λ2, …, λm arbitrary non-negative integers; polynomial composition by θ = (θ1,θ2, …, θn) commutes with monomial-Grobner bases computation if and only if θ1, θ2, , θm are pairwise weakly relatively prime.The notion of weakly relatively prime and W-Gr6bner basis in K[x1, x2,…, xn] are given. The following results are obtained: for polynomials fl, f2, ..., fm, {f1^λ1, f2^λ2,…, fm^λm} is a GrSbner basis if and only if f1, f2, …, fm are pairwise weakly relatively prime with λ1, λ2, …, λm arbitrary non-negative integers; polynomial composition by θ = (θ1,θ2, …, θn) commutes with monomial-Grobner bases computation if and only if θ1, θ2, , θm are pairwise weakly relatively prime.

关 键 词:W-Grobner basis weakly relatively prime polynomial composition. 

分 类 号:O174.14[理学—数学] O153.3[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象