基于高光谱数据的城市不透水层提取与分析  被引量:9

Urban impervious surface area extraction and analysis based on hyperspectral remote sensing image

在线阅读下载全文

作  者:夏俊士[1] 杜培军[1] 逄云峰 曹文[1] 王晓玲[1] 何建国[1] 陈鑫[3] 

机构地区:[1]中国矿业大学国土环境与灾害监测国家测绘局重点实验室,江苏徐州221008 [2]龙口矿业集团生产处,山东龙口265700 [3]南京林业大学森林资源与环境学院,江苏南京210037

出  处:《中国矿业大学学报》2011年第4期660-666,共7页Journal of China University of Mining & Technology

基  金:国家自然科学基金项目(40871195);江苏省"333高层次人才培养工程"科研项目(2009-32);教育部留学回国人员科研启动基金项目

摘  要:针对多光谱卫星遥感数据监测城市生态环境的限制和高光谱遥感数据的优越性,以徐州市城区为例,选择2004和2006年地球观测卫星-1(EO-1)Hyperion高光谱遥感数据,在波段选择、大气校正等预处理的基础上,利用线性光谱混合模型,通过混合像元分解在亚像元尺度上提取两个时相徐州市中心城区的不透水层比例.以高分辨率遥感影像分类结果作为参考,通过与Landsat TM多光谱数据提取结果的比较,表明了高光谱遥感影像提取不透水层的优势.利用两个时相高光谱遥感影像提取的不透水层信息进行变化分析,结果表明:徐州市不透水层比例在持续增加,尤其在城市边缘区更是显著增加,其主要驱动因素是城市扩展和土地利用变化.According to the limitations of multi-spectral images in monitoring urban growth and the advantages of hyperspectral remote sensing data, EO-1 Hyperion hyperspectral remote sensing (HRS) images of 2004 and 2006 were employed to extract impervious surface area of the urban area in Xuzhou city. Image pre-processing including band selection and atmospheric correction was conducted at first. Based on the linear spectral mixture model, impervious sur- face area (ISA) in sub-pixel scale was extracted by spectral unmixing. Using the classification results of high resolution QuickBird image as reference, the results were compared with that from Landsat TM multispectral images, demonstrating the superiority and advantages of hy- perspectral remote sensing data for ISA extraction. Furthermore, the ISA change of two dates was analyzed, and the results show that the impervious surface area over Xuzhou city has been in continuous increase, especially in the urban fringe areas. The main driving factors for ISA change are urban expansion and land use change.

关 键 词:高光谱遥感 不透水层 混合像元分解 线性光谱混合模型 

分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象